"Arise! Awake! Stop not till the Goal is reached"

MODEL PAPER_CBSE-X'20

According to the Syllabus \& Guide Lines for CBSE'20
CLASS-X (2019-2020)
QUESTION WISE BREAK UP
Type of Question Mark per Total No. of Total
Question Questions Marks
VSA
1
SA
LA-I
2

20
06
08
04
LA-II

[Mp 02F Cbse X'20 Q 191221]

GENERAL INSTRUCTIONS:

(i) All questions are compulsory.
(ii) This question paper contains 40 questions divided into four sections $\mathrm{A}, \mathrm{B}, \mathrm{C} \& \mathrm{D}$.
(iii) Question 1-20 in Section \mathbf{A} are very short-answer type questions carrying 1 mark each.
(iv) Question 21-26 in Section B are short-answer type questions carrying 2 marks each.
(v) Question 27-34 in Section C are long-answer-I type questions carrying $\mathbf{3}$ marks each.
(vi) Question 35-40 in Section D are long-answer-II type questions carrying 4 marks each.
(vii) There is no overall choice. However internal choices have been provided in two questions of 1 mark each, two questions of 2 marks each, three questions of 3 marks each and three questions of 4 marks each. You have to attempt only one of the alternatives in all such questions.
(viii) Use of calculators is not permitted.

SECTIONS - A (Questions 01 to 20 carry 1 marks each)

1. The ratio of two numbers is $7: 5$. HCF of the numbers is 77 . The numbers are :
i) $85: 30$
ii) 204,85
iii) 119,30
iv) (19) 85
2. Find the value of ' a ', so that, $a+9,2 a-1$ and $2 a+7$ are the consecutive terms of an A.P.
i) 6
ii) 18
iii) $\frac{18}{7}$
iv) 12
3. The equation of the straight line, which is perpendicular bisector of the line segment joining the points $\mathrm{A}(-1,3)$ and $\mathrm{B}(5,3)$ is
i) $y=2$
ii) $x=3$
iii) $x=2$
(iv) $y=3$
4. A cylinder, a cone and a hemisphere are of equal base and have the same height. What is the ratio in their volumes?
i) $1: 1: 2$
ii) $1: 2: 3$
iii) $3: 1: 2$
iv) $3: 2: 2$
5. Which of the following pair of linear equations have no solution?
i) $3 x+2 y=5, x-3 y=3$
ii) $3 x-2 y=8,9 x-6 y=22$
iii) $2 x-4 y=7, \quad 6 x-12 y=21$
in $11 x+3 y=-16, \quad 2 x+y=7$

OR, The value of ' p ' for which the pair of linear equations $2 x+3 y=7$ and $(k-1) x+(k+2) y=3 k$ have infinitely many solutions is
i) $\frac{7}{2}$
ii) 7
iii) $\frac{7}{6}$
iv) -7
6. If sum and product of the zeroes of aquadratic polynomial are (-5) and (-14), then the polynomial is
i) $x^{2}-5 x-14$
i) $x^{2}+9 x-14$
iii) $x^{2}+5 x-14$ or
iv) $x^{2}-9 x-14$
7. AB and DC are respectively a diameter and a chord of a circle. Given that lengths of AB and DC are 10 units and 6 units respectively, If $\mathrm{DC} \| \mathrm{AB}$, then distance between AB and DC is
i) 4 units
ii) 8 units
iii) 5 units
iv) 6 units
8. The sumf of the zeroes of the quadratic polynomial $x^{2}-5 x-14$ is
i) 3
ii) -3
iii) 4
iv) -4
9. If $\triangle A B C$ is an isosceles right angled at A, then the value of secB is
i) $\sqrt{3}$
ii) $\frac{1}{\sqrt{2}}$
iii) $\sqrt{2}$
iv) $\frac{1}{\sqrt{3}}$
10. $\mathrm{A}(1,5)$ and $\mathrm{B}(7,5)$ are two vertices of an equilateral $\triangle \mathrm{ABC}$. Then coordinates of C is
i) $(4,3 \sqrt{3})$
ii) $(4,8)$
iii) $(5,5+3 \sqrt{3})$
iv) $(4,5+3 \sqrt{3})$
11. Which of the following is decimal expansion of an irrational number ?
i) 3.452
ii) $\overline{0.13}$
iii) $4.030030003 \ldots$
iv) 5.07
12. An integer is chosen at random from 1 to 1000 . Find the probability that the number is a perfect cube.
13. If $\cot A=\frac{1}{\sqrt{7}}$, then find the value of $\frac{\operatorname{cosec}^{2} A-\sec ^{2} A}{\operatorname{cosec} A+\sec ^{2} A}$.
14. $\mathrm{A}(2,1)$, and $\mathrm{B}(-2,1)$ are the two vertices of an equilateral $\triangle \mathrm{ABC}$. If C does not lie in $1^{\text {st }}$ quadrant, then find coordinates of point C .
15. In fig- $1, \mathrm{DE}$ is parallel to BC and $\mathrm{AD}=4 \mathrm{~cm}, \mathrm{BD}=1 \mathrm{~cm}$.

Find : area $(\triangle A B C)$: area $(\triangle A D E)$.
(ig-1
16. From the top of a post, the angle of elevation of a telephone tower is 45°. If the height of the post and the distance between the feet of post and tower are 10 m and 30 m , then find the height of the tower.
OR If $\sqrt{2} \cos A-\sin A=\cos A \quad\left(0^{\circ}<A<90^{\circ}\right.$, then write the value of cotA,
17. Write a rational number between $\frac{3}{5}$ and $\frac{5}{7}$
18. A die is thrown once. What is the probability of getting a composite number.
19. If $x^{2}+y^{2}+z^{2}-x y-y z-z x=0$, where x , y and z are the lengths of sides of a triangle, then the triangle is :
i) scalene
ii) isosceles
iii) equilateral
iv) right-angled
20. Write the relation between Mean, Môde and Median.

SECTIONS - B (Questions 21 to 26 carry 2 marks each.)

21. If $\left(x^{2}+a x+b\right)$ is a perfect square, then write the relation between \mathbf{a} and \mathbf{b}.
22. A die is thrown twice. Whatis the probability of getting the lowest prime number as sum of the digits on upper faces of two throw.
OR, What is the probability of taking a vowel from the letters of the word 'daughter'.
23. In adjacent figure, two concentric circles with centre at O and having radii 5 cm and 3 cm . A chord $P Q$ of the bigger circle touches the smaller circle at M. Find the length of chord PQ .

24. An aeroplane when 3000 m high from ground, passes vertically above another aeroplane at an instant, when the angles of elevation of the two aeroplanes from the point, on the ground are 60° and 45° respectively. Find the vertical distance between the aeroplanes.
OR, Given, $\sin (A) B)=\frac{1}{2}=\cos (A+B)$, where $0<(A+B)<90^{\circ}$ and $A>B$.
Find angles A and B .
25. In fig-2, $\triangle \mathrm{ABC}$ is a right-angled, right angle at B and $\mathrm{AB}=3 \mathrm{~cm}, \mathrm{BC}=4 \mathrm{~cm}$.

Semicircles are drawn on AC, AB and BC as diameters. Find area of the shaded region.

26. A ticket is drawn at random from a bag containing tickets numbered from 1 to 50 . Find the probability that the selected ticket has a number which is a multiple of 7 .

SECTIONS - C (Questions 27 to 32 carry 3 marks each.)

27. If the sum of the squares of zeros of polynomial $\left(6 x^{2}+x+k\right)$ is $\frac{25}{36}$, then find
28. Construct a tangent to a circle of radius 4 cm from a point on the concentric circle of radius 6 cm and measure its length.
OR, Draw a right angled triangle ABC with $\mathrm{BC}=7 \mathrm{~cm}, \angle \mathrm{~B}=45^{\circ}$ and $\angle \mathrm{A}=90^{\circ}$. Then construct a triangle whose sides are $\frac{2}{3}$ times the corresponding sides of $\triangle \mathrm{ABC}$.
29. A hemispherical tank, of diameter 3 m . is full of water. It is being emptied by a pipe at the rate of $3 \frac{4}{7}$ litres per second. How much time will it take to make the tank fhree-fourth empty? $\left[\pi=\frac{22}{7}\right]$
30. Prove that, $\left(1+\frac{1}{\tan ^{2} A}\right)\left(1+\frac{1}{\cot ^{2} A}\right)=\frac{1}{\sin ^{2} A-\sin ^{4} A}$

OR, Prove that: $\frac{1}{\cos ^{2} A}-\frac{\sin ^{2} A-\sin ^{4} A}{2 \cos ^{4} A-\cos ^{2} A}=1$
31. Show that $2+\sqrt{3}$ is irrational.

OR, Show that the square of any positive odd integer is of the form $(8 \mathrm{~m}+1)$, for some integer m .
32. ABCD is a quadrilateral, whose sides are $\mathrm{AB}=6 \mathrm{~cm}, \mathrm{BC}=9 \mathrm{~cm}, \mathrm{CD}=8 \mathrm{~cm}$ and $\mathrm{DA}={ }^{\prime} \mathrm{a}^{\prime} \mathrm{cm}$. A circle touches the sides of ABCD. Find $a b$. [see fig-3]

SECTIONS - D (Questions 33 to 36 carry 4 marks each)

33. $A(4,6) ; B(6,2) ; C(8,10)$ are the vertices of $\triangle A B C . D, E, F$ are the mid-points of the $A B, B C$ and $C A$ respectively. Find area $(\triangle \mathrm{DEF})$: area($\triangle \mathrm{ABC})$.
34. Given $(x+y-3)^{2}+(3 x+y+1)^{2}=0$ [x and y are real numbers]. Solve for x and y.
35. Solve for ' x ' : $\frac{1}{(x-1)(x-2)}+\frac{1}{(x-2)(x-3)}+\frac{1}{(x-3)(x-4)}=\frac{1}{6}$.
36. Given $9^{\text {th }}$ term of an A.P. is zero. Prove that its $29^{\text {th }}$ term is double of its $19^{\text {th }}$ term.

OR, The $n^{\text {th }}$ term and the sum of first n terms of an A.P are respectively are T_{n} and S_{n} and $\frac{S_{m}}{S_{n}}=\frac{m^{2}}{n^{2}}$. Prove that, $\frac{T_{m}}{T_{n}}=\frac{2 m-1}{2 n-1}$.
37. In $\triangle \mathrm{ABC}, \angle \mathrm{ABC}>90^{\circ}$ (see the adjacent figure). CD is perpendicular to AB produced. Prove that, $\mathrm{AC}^{2}+\mathrm{AB}^{2}+\mathrm{BC}^{2}+2 \mathrm{BC} . \mathrm{BD}$.

38. From the top of a building 60 m . high, the angles of depression of the top and bottom of a lamppost are observed to be 30° and 60° respectively. Find the distance between the lamppost and building. Also find the difference of height between building and lamppost.
OR, The angle of elevation of the top of a telephone tower from the foot of a building is 60° and the angle of elevation of the top of the building from the foot of the tower is 30°. If the building is 50 m high, find the height of the telephone tower.
39. In fig-5, $\mathrm{PM}=21 \mathrm{~cm}, \mathrm{MO}=30 \mathrm{~cm}$ and $\mathrm{QM}=7 \mathrm{~cm}$. Find the volume of the figure.

OR, A bucket is in the form of a frustumof a cone with a capacity of $12308.8 \mathrm{~cm}^{3}$. The radii of the top and
bottom circular ends of the bucket are 20 cm and 12 cm respectively. Find the height of the bucket and also the area of metal sheet used in making it. $[\pi=3.14]$
40. Find the mean, mode and median for the following data :

Class interval	Frequency
$25-35$	7
$-35-45$	31
$45-55$	33
$55-65$	17
$65-75$	11
$75-85$	1
Total	60

${ }^{6}$ The Algebra is but a Geometry in writing, the Geometry is but an Algebra enfigured.' - Sophie German.

Paper by :
PAMIR KUMAR BASE
Basu-Niketan, Bonmasjid Para,
Burdwan, West Bengal, India
Pin- 713101
e-mail: help@confinmath360.com
e-mail:confinmath360@gmail.com
Website: www.confinmath360.com
Blog : robinmath.blogspot.in

